
1

ICT286
Web and Mobile Computing

Topic 6
Cross-Platform Mobile Apps 
Development with Cordova



Objectives 
• Understand the pros and cons of cross-platform mobile apps 

written with Cordova and native apps written with platform-
specific languages such as Android and iOS. 

• For a mobile app written with Cordova, understand the 
relationship between HTML/CSS/JavaScript code written by 
the application programmer and the Cordova library, 
Cordova plugins it uses, and the native code that 
implements those Cordova plugins.

• Understand the directory structure of a Cordova project, in 
particular, the purpose of the following directories in a 
Cordova project: www directory, the platforms directory 
and the plugins directory.

2



Objectives 
• Be able to install Cordova and related programs on your 

computer so that you can develop Cordova apps on your 
own computer.

• Be able to use Cordova commands to package apps for 
multiple platforms including web browser, Android and iOS.

• Be able to build and run apps on web browser, Android 
emulator and iOS emulator.

• Understand and be able to design simple cross-platform 
mobile apps using Cordova.

• Be able to access device resources including device 
information, accelerometer and camera.

3



4

Smart Phones
• Blackberry smart phone appeared in 2003 – the first 

widely used mobile phone for accessing the Web
• Unlike the old mobile phones, the smart phones are 

controlled by sophisticated operating systems
• Based on the OS, smart phone market is now dominated 

by Google’s Android, and Apple’s iOS.
• Tablets usually use the same operating systems as their 

smart phone counterpart.



5

Smart Phones vs PCs: 
Annual Shipment



6

Smart Phones vs PCs: 
Functionality

• PCs generally used the wired network or WiFi to access the 
Internet, their mobility is limited.

• Smart phones use two communications methods: WiFi and 
cell phone networks, hence they are much more mobile.

• Compared to conventional PCs, smart phones are equipped 
with 
– Touch screen, hence with much natural and user-friendly interface
– GPS and/or other global positioning systems, therefore they are 

capable of being location-aware

– Accelerometers, enabling the detection of device rotation and 
motion and various other sensors.



7

Smart Phones vs PCs: 
Limitations

• PCs generally have large screen size than those on the 
smart phones. This means some applications need to be 
adapted to work on the small screens, sometimes requiring 
a major re-design of their screen layout.

• The CPU and GPU on the smart phones generally run at 
slower speeds compared to those on the PCs due to the 
limitation of physical size, power consumption, and heat 
problem, hence in many cases, the CPU intensive 
operations need to be shifted to the server end and the 
mobile app acts just as the front end of the application.

• Smart phones are run by small batteries and this is a serious 
limitation compared to desktop and even laptop computers.



8

Market Share of 
Smart Phone OS



9

Android and iOS 
Eco-Systems

• Both Apple’s iOS and Google’s Android have developed 
their own app eco-systems, including their online app stores

• According to http://www.statista.com, by 2nd quarter 2019:
– Andoid Play Store:  2.46 millions apps
– Apple’s App Store:  1.96 millions apps
– Windows Store:      0.67 millions apps

• This new way of software development, marketing and sales 
reaches out to millions of potential app developers 
worldwide

http://www.statista.com


Mobile Web
• a website that is specifically optimized for the mobile 

devices
• the user interface is built with web-standard 

technologies, such as HTML, CSS and JavaScript
• available at a URL, the contents are all stored on the 

web server.
• a mobile web is not installed on the phone. Its contents 

are retrieved from its server and rendered inside a web 
browser running on the mobile device

• there is usually a full version for PCs and the difference 
between the full version and mobile version is mainly in 
user interface, not in their functionalities.

10



Mobile Web

11



Mobile App 
• is an application program designed for a specific task
• most of its contents are installed on the mobile device 

and the app run directly on the device (rather than 
inside a web browser)

• it has access to the device hardware (speakers, GPS, 
accelerometer, camera, file system, etc.)

• written with a programming language, such as Swift for 
iOS, and Java for Android

• there are also development libraries and tools such as 
Apache Cordova that allow development of cross-
platform mobile apps. In this case, the programmer 
writes one app, but the app can be built for multiple 
platforms such as Android, iOS, Windows, macOS, Linux 
etc. 12



13

Develop Mobile Apps -
iOS

• Require Apple Xcode to develop native iOS applications.
• Xcode is only available on macOS, therefore you cannot 

develop a native iOS app using Windows or Linux
• Applications are written with a new programming 

language Swift 
• Need to register as an Apple Developer
• The app needs to be distributed via Apple’s App Store.
• The app can only run on the iOS platform



Xcode and Swift

14



Xcode and Swift

15



Xcode and Swift

16



Xcode and Swift

17



Xcode and 
Swift

18



19

Develop Mobile Apps -
Android

• Require Android Studio and its SDK to develop native 
Android applications.

• Android Studio and SDK are available on Windows, 
macOS, and Linux

• Android applications are written with Java programming 
language and XML

• An native Android application can only run on a device 
running Android operating system

• Android operating system uses Linux kernel
• Android has the largest installed base of any operating 

system



Android Studio and Java

20



Android 
Studio and 

Java

21



Cross-Platform Mobile Apps
• iPhone mobile apps developed with Xcode only 

runs on iPhone and iPad
• Need to learn a new language, Objective-C or 

Swift
• Android apps developed with Android Studio 

only runs on Android devices
• Need to use Java
• This means one has to develop the same app at 

least twice, one for each major platform

22



Cross-Platform Mobile 
Application Development

• An alternative to these platform-specific development 
environments, such as Xcode and Android Studio, is 
Apache Cordova.

• Cordova:
– open-source mobile apps development framework
– use standard web technologies you are already familiar 

with: HTML5, CSS, and JavaScript
– provide a consistent JavaScript API to access the 

underlying hardware and system features
– available on Windows, Mac and Linux
– work with a consistent command line interface (CLI) on 

all development platforms
23



Apache Cordova
• A Cordova application is written in HTML5, CSS and 

JavaScript
• The application is rendered by the same web engine that 

the mobile device’s web browser uses to render web 
pages. 

• However, the standard web application is not able to 
access and manipulate the mobile device’s hardware 
such as camera, battery information, accelerometer, and 
many system features such as contacts and file system.

• For this the Cordova team developed a set of JavaScript 
libraries that provide one consistent API for accessing 
these hardware and system features cross several 
different mobile OS platforms.

24



Cordova Source Code
• The source code of a Cordova application consists 

of two parts:
– Application program code, written by the application 

programmer. The program is coded in HTML5, CSS 
and JavaScript. The JavaScript code includes calls to 
Cordova libraries to access hardware and system 
features.

– Cordova code, developed by the Cordova team. The 
code consists of JavaScript code as well as platform-
specific source code that implements the Cordova API 
for a specific platform, using platform-specific 
language such as Swift for iOS, and Java for Android. 

25



Cordova Plugins
• Cordova library is organised as a set of “plugins”
• Each plugin provides JavaScript API for a set of 

hardware and system features, eg
– cordova-plugin-camera defines a global navigator.camera

object, that provides the API  for accessing the cameras on the 
device, eg: 

• .getPicture(successCallback, errorCallback, 
options)

• .cleanup()

• .CameraOptions : Object

– cordova-plugin-device-motion provides access to the device's 
accelerometer via navigator.accelerometer object.

– cordova-plugin-contacts defines a global 
navigator.contacts object, which provides access to the 
device contacts database.

26



Cordova Plugins
• For each OS platform, there is a separate  

implementation of Cordova plugins for that OS platform, 
eg:
– There is an implementation of Cordova plugins for iOS platform.
– There is an implementation of the same plugins for Android 

platform.
– There is an implementation of the same plugins for Windows 

Phone platform.
• For each supported platform, a Cordova plugin is 

implemented with the language specific to that platform  
using the API provided by the OS of that platform. Eg
– On iOS, the plugin would be implemented in Switf using the 

native system services from iOS operating system
– On Android, the plugin would be implemented in Java using the 

native system services from Android operating system
27



Application Packaging
• To develop a Cordova application, the application 

programmer writes the source code in HTML5, CSS and 
JavaScript.

• However the source code written by the application 
programmer alone is not sufficient.

• He also needs to copy the source code for each plugin 
he used in the application, eg, if the application made 
access to the camera, he would need to copy the source 
code for plugin cordova-plugin-camera in his 
application source code.

• This process is called application packaging.
• Packaging must be done for each platform you target 

your application to.
28



Building a Cordova Project
• Once the application has been packaged for the targeted 

platforms, you need to build the application for each targeted 
platform.

• Building an application for a platform means compiling the 
included plugins source code and linked the compiled code 
together to create an executable program.

• Note that the source code written by the application 
programmer needs no compilation as it consists of only 
HTML5, CSS and JavaScript, which can be directly executed 
by the web engine.

• The compilation will use the native development environment 
for each platform, eg,
– iOS:  Xcode
– Android: Android Studio and SDK
– Windows Phone: Microsoft Visual Studio for Windows Phone and SDK

29



Testing an Application
• Once the application is built, you can install it and run it 

either in a device emulator or in a physical device.
• Xcode includes an emulator that could simulate various 

versions of iPhones and iPads.
• Android Studio provides an emulator that can simulate 

several different types of Android devices at different API 
levels. The latest API level is 29.

• You can also install and run an application directly on a 
physical device. 

• If you use Windows to develop the application, you may 
need to install the USB driver from the device 
manufacturer before you can run the application on the 
device, and you must also set the device to USB 
debugging mode. 30



Testing an Application on 
Browser Platform

• As a Cordova application is written in HTML5, CSS and 
JavaScript, it can be tested on a web browser (although 
some hardware features may not be available on a web 
browser). 

• In many cases it is much easier to test the application in 
a web browser first, as browsers such as Google 
Chrome provide very good debugging tools for web 
applications (View | Developer | JavaScript Console).

• It is preferably that you test your application with a 
browser first to fix many problems related HTML, CSS 
and JavaScript, before testing it on an emulator or 
physical device.

31



Testing an Application on 
Browser Platform

32



Cordova Command-Line 
Interface (CLI)

• Apart from the library that provides a consistent JavaScript API for 
accessing hardware and system features, Cordova also provides a 
Command-Line Interface, or CLI.

• CLI allows us to develop a Cordova application (eg, packaging, 
building, testing, and running an application) in a consistent way 
whether we use Microsoft Windows, Mac, or Linux.

• Some of the CLI commands:
– cordova create hello com.ict286.hello HelloWord
– cordova platform add ios android browser
– cordova requirements android
– cordova plugin add cordova-plugin-device
– cordova build
– cordova run browser
– cordova run android --target=Nexus_5_23
– cordova run ios --target=iPhone-6 33



Cordova Project Folder
• A Cordova project directory consists of a number of sub-

directories:
– www: this directory contains the HTML5, CSS, and JavaScript code 

written by the application programmer. 
– platforms: contains the packaged source code for the application and 

built executable for each targeted platform 
– plugins: contains the source code for each plugin added to the 

application.
• Application programmer should not manually modify 

anything under platforms and plugins sub-directories. The 
code in these two sub-directories are created by Cordova 
commands.

• Application programmer usually places his HTML code in file 
www/index.html, CSS code in file www/css/index.css, 
and JavaScript code in file www/js/index.js. 34



Cordova 
Project 
Folder

35



So What is Apache Cordova?
• Apache Cordova is a set of libraries and tools that allow us 

to create cross-platform mobile applications using HTML5, 
CSS and JavaScript from Windows, Mac and Linux that 
targets all major mobile operating systems.
– Cordova provides the same set of JavaScript API to access the 

underlying hardware and system features on the supported mobile 
operating systems;

– Cordova provides the same software development environment 
(eg, CLI) to develop mobile apps on Windows, Mac and Linux;

– Cordova applications are native applications – the access to the 
underlying hardware and system features is done by the code 
native to the underlying operating system; 

– Cordova applications are written in the common web languages: 
HTML5, CSS and JavaScript.

36



Cordova vs Native 
Development Environments

• Android Studio and SDK: 
• application code is written in Java
• screen drawing is done using UI related Java libraries
• access to the operating system service is done in Java
• the application can only run on Android devices

• Xcode: 
• application code is written in Swift
• screen rendering is done using UI related libraries
• access to the operating system service is done in Swift
• the application can only run on iOS devices, ie, iPhones and iPads

• Apache Cordova: 
• application code is written in HTML5, CSS, and JavaScript
• page rendering is done by the same web engine used by the device’s default 

web browser
• access to the operating system service is done in JavaScript
• the application, once properly packaged and built, runs on all supported mobile 

operating systems 37



Pros and Cons
• Universality and Consistency

– Using native development environments, you need to develop one 
application for each mobile operating system

• Not universal (not cross-platform)
• May not behave consistently on different platforms as they are different 

applications
– With Cordova, one application runs on (nearly) all operating systems

• Universal (ie, cross-platform)
• Behave consistently on all platforms

• Development cost
– Native environments: need to learn multiple environments, multiple OS 

and multiple languages
• High cost

– Cordova: one application for all platforms, and HTML5, CSS and 
JavaScript are common web technologies

• Low cost

38



Pros and Cons
• Efficiency

– With a native development environment, the application could be as 
efficient as the operating system allows

– With Cordova, it could be argued that as JavaScript is an interpreted 
language it could be less efficient than a compiled language native to the 
operating system (eg, Swift)

• However one must remember that many web engines use Google’s JavaScript engine: V8 
engine, which is compiled and is very efficient

• Many games are written with Cordova – this shows that a well-written Cordova application 
could be as efficient as the application written in a native language.

• Access to operating system services
– Native environments: an application can access any service available from 

the underlying operating system
– Cordova: some available operating system services may not yet be 

available as Cordova plugins, hence not available to the application 
programmer directly

• However, there are established procedures and protocols for anyone with 
enough expertise to write a new Cordova plugin to incorporate the service, 
hence this is not a fundamental obstacle.

39



Pros and Cons
• Easiness in creating graphical user interface

– Most native development environments, such as Xcode, Visual 
Studio, and to some extent, Android Studio, provides excellent tools 
for you to design graphical user interface of your application using 
“drag and draw”.  the source code for the GUI will be generated 
automatically by the tool

– Cordova does not provide such a “drag and draw” tool for you to 
design your graphical user interface. 

• However, as the languages used to write the graphical user interface are 
the common web languages (HTML5, CSS and JavaScript), there are 
plenty of web page authoring tools such as Adobe DreamWeaver, 
Microsoft Expression Web Designer for this purpose.

• there are a number of JavaScript frameworks for developing mobile apps 
that greatly simplify the UI design, such as jQuery Mobile, Ionic and 
Boostrap. 

40



First Cordova Application
• Open up a terminal (eg, Command Prompt on Windows, 

terminal on Mac and Linux)
• Create a new cordova project:

cordova create example01 com.ict286.example1 Example1

You will create a new project folder named “example01” in your current 
directory.  

41



The www Folder
• You do not need to manually modify any files or 

directories under project folder except the files in www 
directory. The default structure of the www directory 
looks like below:

42



Files under www Folder
• The most important file in the WWW directory is the file 
index.html. You need to place your application’s 
HTML code there.

• By convention, you should place your CSS style sheets 
under www/css directory. The default file name of your 
style sheet is index.css.

• By convention, you should place your JavaScript code 
under www/js. The default file name for the JavaScript 
code is index.js.

• Similarly, place images under www/img.
• Our first application doesn’t use any style sheet or 

JavaScript code. Hence you may remove those files or 
leave them there untouched. Our HTML code would not 
make any reference to them anyway!

43



HTML Code
• Use a text editor to change the content of the 
index.html file to:

<!DOCTYPE html>

<html>

<head>

<title> Cordova Example 1 </title>

</head>

<body>

<h1> Cordova Example 1 </h1>

<p>This is our first Cordova example. This is just a 
web application. </p>

</body>

</html>

44



Package and Build
• As you can see our first Cordova application is just a web application, or 

more precisely, just a simple HTML page!
• It is true that you can turn any web page, or set of web pages into a 

Cordova application
– You don’t have to use JavaScript 
– You don’t have to use any Cordova service
– But you do need to package it for the target platforms and you do need to 

build the application!
• Packaging and building:

cordova platform add android ios browser
cordova build

– The first command adds the targeted platforms to the project – in this case, 
Android, iOS, and browser (so that you can also test it in a web browser).

– The second command packages and builds the application for all three 
platforms.

– Note: you must make sure that you are in the project folder before typing any 
cordova command for that project! Use cd command to enter a project folder.

45



Test the App in a Browser
• Once the application is successfully built, you can run it 

in any one of the targeted platforms.
• Test it in a web browser (the right pane is the JavaScript 

console, which can be turned on or off in Google 
Chrome):
cordova run browser

46



Test the App on iOS
• Of course you can test it in 

an emulator or even on a 
physical device.

• Test it on an iPhone emulator
cordova run ios

--target=iPhone-6

47



Test the App on Android
• Or on an Android 

emulator
cordova run android 

--target=Nexus_5_API_25

• You can find out what 
emulators or devices are 
available on your 
machine and their names 
using the following 
command

cordova run --list

48



Example 2
• Being a Cordova application, naturally most of times it 

would need to use Cordova services (plugins).
• However it cannot use any Cordova service before 

Cordova is initialised. Once Cordova finishes its 
initialisation, it fires off a “deviceready” event.

• Our second example illustrates how to capture this event 
and then use one of the Cordova plugins to display a 
message to inform the user that Cordova is ready. 

• This application needs to firstly register the event handler 
for “deviceready” event. 

• Once the event is fired, the event handler is called which 
will call navigator.notification.alert method to 
display a message. This notification object comes 
from cordova-plugin-dialogs.

49



The Source Code
• www/index.html
<!DOCTYPE html>

<html>
<head>

<title>Cordova Example 2</title>

<meta name="viewport" content="user-scalable=no, initial-scale=1, 
maximum-scale=1, minimum-scale=1, width=device-width" />

<script src="cordova.js"></script>
<script>

function onBodyLoad() {

console.log("Entered onBodyLoad");
document.addEventListener("deviceready", onDeviceReady, false);

}
function onDeviceReady() {

// Cordova finishes initialisation

console.log("Cordova is ready");

// need to add dialogs plugin:
// cordova plugin add cordova-plugin-dialogs

navigator.notification.alert("Cordova is ready!");
}

</script>

</head> 50



The Source Code
• www/index.html (continue)

<body onload="onBodyLoad()">

<h1>Cordova Example 2</h1>

<p>This is the second Cordova example. It displays a dialog when Cordova 
is ready.

Require plugin dialogs.</p>

</body>

</html>

51



The Viewport Meta Tag
• The viewport is the user’s visible area of a web page. It 

may be or may be not equal to the screen area.
• If the view is larger than the screen, the user may need 

to move the page left and right, up and down, in order 
to see the whole page.

• Or the user may need to scaled it down to see the 
whole page (but everything would be smaller), or to 
scaled it up to see small prints.

• Please note that the handling of viewport meta is 
inconsistent among different devices. For most mobile 
apps, use the following attributes:

• <meta name="viewport" content="user-scalable=no, 
initial-scale=1, maximum-scale=1, minimum-
scale=1, width=device-width" />

52



Import Cordova Library
• To use Cordova services the application must use 

Cordova library by providing the following reference
<script src="cordova.js"></script>

• This script element could be placed inside head 
element or at the end of the body element.

• Although we have placed the two JavaScript elements 
inside the head element in this application, this is not 
necessary.

• It is actually preferrable to place the JavaScript code at 
the end of the body element so that loading and 
rendering of HTML code is not delayed by loading large 
JavaScript code – better user experience.

53



Register an Event Handler
• In this application there are two JavaScript functions in addition to the 

Cordova library.
• The first function, onBodyLoad, defines an event handler (or 

callback) for onload event.
function onBodyLoad() {

console.log("Entered onBodyLoad");                

document.addEventListener("deviceready",

onDeviceReady, false);

}
– Note, addEventListener was introduced in DOM Level 3 and it allows us to define whether the event handling 

would be "bubbling up" (3rd argument false) or "capturing" (3rd argument true).

• This callback sends a message to the console (which can be seen 
from JavaScript console if you test it in a browser – good for 
debugging JavaScript code) immediately after the HTML page is 
loaded.

• It then registers an event handler (a function named 
onDeviceReady) for another event – deviceready event, using 
addEventListener method from Document object.

54



Get Cordova Services
• The second function, onDeviceReady, defines an event handler for 

“deviceready” event.
function onDeviceReady() {

console.log("Cordova is ready");

// need to add dialogs plugin:

// cordova plugin add cordova-plugin-dialogs

navigator.notification.alert("Cordova is ready!");

}

• Once Cordova finishes its initialisation, the deviceready event 
would be fired, and the above event handler would be called 
automatically.

• You can then start to get services from Cordova plugins. In this case 
we just display a message to inform the user that Cordova is ready for 
action. 

– Although the same thing could be achieved with the alert method from Window
object, we deliberately choose to use the alert method from Cordova to make a 
point here.

55



Package, Build and Run the 
Application

• The project Example2 can be packaged and built with the following 
commands:
– add the targeted platforms to the project. In this case we target the app to iOS, 

Android and browser:
cordova platform add ios android browser

– add the required plugins into the project – this app has only used 
navigator.notification object, which is provided by the dialogs plugin, 
hence

cordova plugin add cordova-plugin-dialogs

– then build the project for all targeted platforms:
cordova build

– to test the app in a browser, try
cordova run browser

– to run it in an iOS device named iPhone-6 (actually an emulator), try
cordova run ios --target=iPhone-6

– to run it in an Android device named Nexus_5_API_24 (an emulator): try
cordova run android --target=Nexus_5_API_24 56



Test Example 2

57



58



Example 3
• In the third example, we show how files are named, and 

where the JavaScript code is placed in a typical Cordova 
app. Firstly let’s look at the head of the index.html like:

<!DOCTYPE html>

<html>

<head>

<title>Cordova Example 3</title>
<meta name="viewport" content="user-scalable=no, initial-

scale=1, maximum-scale=1, minimum-scale=1, width=device-width" />
<link rel="stylesheet" type="text/css" href="css/index.css" />

</head>

• Here we refer to a stylesheet named index.css which 
is placed under css folder.

59



Style Sheet
• The CSS file index.css looks like this:

img {

position: absolute;

left: 0px;

top: 0px;

z-index: -1;

}
h1 {

position: relative;

left: 55px;

top: -10px;

}

• Which places the image at absolute position at the top 
left corner of the viewport, and places the header h1 at 
relative position, so that the Codova logo and the 
header are vertically aligned.

60



Placement of JavaScript Code
• Next we take a look at the body of the index.html file:
<body onload="onBodyLoad()">

<h1> Example 3 </h1>

<img src="img/logo.png" alt="Cordova Logo" height="60" />

<p>This Cordova example displays the device information.

Require cordova-plugin-device. </p>

<p id="appInfo"> </p>

<script src="cordova.js"></script>

<script src="js/index.js"></script>

</body>

</html>

• As you can see, we will load JavaScript code at the end. 
The user defined JavaScript code is placed in the file 
js/index.js.

61



JavaScript Code
• Next we have a look at the JavaScript code from file 

js/index.js:
function onBodyLoad() {

console.log("Entered onBodyLoad");

document.addEventListener("deviceready", onDeviceReady, 
false);

}

function onDeviceReady() {
console.log("Entered onDeviceReady");

// report App info

var info = document.getElementById("appInfo");

info.innerHTML =

"Cordova version: " + device.cordova + "<br/>"

+ "Platform: "        + device.platform + "<br/>"
+ "Model: "           + device.model + "<br/>"

+ "OS version: "      + device.version;

}
62



Get Device Information
• The callback function onBodyLoad would register the 

event handler for deviceready event once the HTML 
code is loaded.

• Once Cordova finishes its initialisation, it would fire off 
the event deviceready, resulting in calling 
onDeviceReady callback.

• In the callback, we can start using Cordova services. 
• In this app, we simply use cordova.plugin.device

to obtain some information about Cordova and the 
device.

• We then construct an HTML fragment on the fly and 
place it under the paragraph with id appInfo, using 
innerHTML property.

63



Build and Run
• Example 3 can be created, packaged, built and tested 

using the following CLI commands.
cordova create example03 com.ict286.example3 Example3

cd example03

Create the HTML code, CSS code and JS code for the application

cordova platform add browser ios android
cordova requirements

cordova plugin add cordova-plugin-device

cordova build

cordova run --list

cordova run browser
cordova run ios --target=iPhone-6

cordova run android --target=Nexus_5_API_25
64



65



66



Example 4
• Our fourth example is identical to Example 3 in 

functionality, however the code is structured in a typical 
Cordova way! 

• It is highly recommended that you follow this structure 
when you design your Cordova apps.

• The code in www/index.html, www/css/index.css is 
identical to those in the same files in Example 3.

• The code in www/js/index.js, although perform the 
same task, looks very different from the JavaScript code 
in Example 3!

• In this code, we define a JavaScript object that consists of 
a set of  variable:value mapping, which is a 
JavaScript object literal.

67



JavaScript Code in js/index.js
var app = {

initialize: function() {
this.bindEvents();

},

bindEvents: function() {
document.addEventListener('deviceready', this.onDeviceReady, false);

},

onDeviceReady: function() {
app.updatePage();  // would this.updatePage() work?

},

updatePage: function() {

var info = document.getElementById("appInfo");

info.innerHTML = "Cordova version: " + device.cordova + "<br/>"
+ "Platform: "        + device.platform + "<br/>"
+ "Model: "           + device.model + "<br/>"

+ "OS version: "      + device.version;
},

};

app.initialize(); 68



JavaScript Object Literal
• Before we explain the JavaScript program in Example 

4, we need to have another look at JavaScript objects.
• In JavaScript, pretty much everything is an object.
• There are many ways we can define an object. We 

have learnt a few ways in Topic 3. 
• One of the ways to define a JavaScript object is use 

object literal:
var obj = { 

name1: value1,

name2: value2,

. . . . . .

namen: valuen
}

• In this way, we define and create a single object (an 
object literal), named obj. 69



JavaScript Object Literal
• Each name:value pair defines a property of the object. 

You can access the property of an object by its name: 
obj.name. Eg,
var unitName = { 

ict286: "Web Computing",

ict365: "Software Development Frameworks",
ict375: "Advanced Web Programming"

};

console.log("old name: " + unitName.ict286);

unitName.ict286 = "Web and Mobile Computing";

console.log("new name: " + unitName.ict286);

• You can test above code using node from a terminal, as 
in Topic 3. Place the above code in a file such as 
test.js, and type command
node test.js

(don’t be lazy – type the code in, do not copy-and-paste J) 70



The Method of an Object
• However in a name:value pair, the value doesn’t 

have to be a string or a number. It can also be a 
function (or even another object)! In this case, the 
function is also known as a method of the object. See 
the following example:

var circle = {

radius: 1,

setRadius: function(radius) {

this.radius = radius;

},

area: function() {

return Math.PI * this.radius * this.radius;

},

circumference: function() {
return Math.PI * this.radius * 2;

}

} 71



What is this?
• Note that in the method setRadius, area, and 

circumference, the use of this to access a property in the 
same object. Eg,

area: function() {

return Math.PI * this.radius * this.radius;

},

• As property radius belongs to an object, you have to use 
object.name to access the property, unless the property is 
defined in the global scope. 

• The reserved word this represents the object the function is 
currently in.

• In the above example, function area is currently in object 
circle, hence this.radius is equivalent to circle.radius. 
The above return statement could be written as
return Math.PI * circle.radius * this.radius;

72



What is this Again
• Now back to object app defined in file js/index.js

earlier. In the callback onDeviceReady, we invoke 
updatePage method with

app.updatePage();

Would the callback work if we invoke updatePage with 
either

updatePage();

or

this.updatePage();

• The answer is No!

73



What is this Again
• The first statement, updatePage();, is incorrect. As it 

refers to a function defined in the global scope, where 
no such function is defined.

• The second statement, this.updatePage();, could 
be right if this refers to object app at the time the 
function is called.

• Unfortunately this is not the case!
• Remember the callback is not invoked inside the object 
app. Instead it is invoked in the event loop - a 
completely different scope from object app - when the 
relevant event is triggered at a future point of time.

• Hence, the reserved word this represents the object 
in which the callback is invoked, not object app!

• Therefore the second statement would not work! 74



Example 5
• Our fifth example shows how to detect changes in device 

orientation and size. When the change is detected, the new 
screen size and browser’s inner window size are displayed 
(see example05/www/js/index.js for complete code).

updatePage: function() {

var orient = "<strong>Orientation: </strong>"

+ window.orientation + "degree <br/>";

var swidth = "<strong>Screen width: </strong>"

+ screen.width + "<br/>";

var sheight = "<strong>Screen height: </strong>"
+ screen.height + "<br/>";

var wwidth = "<strong>Window inner width: </strong>"

+ window.innerWidth + "<br/>";

var wheight = "<strong>Window inner height: </strong>"

+ window.innerHeight + "<br/>";

document.getElementById("appInfo").innerHTML

= orient+swidth+sheight+wwidth+wheight;
}, 75



Events: orientationchange
and resize

• The program registers two window events: 
orientationchange and resize.

bindEvents: function() {

document.addEventListener('deviceready', 
this.onDeviceReady, false);

window.addEventListener('orientationchange', 

this.onOrientationChange);

window.addEventListener('resize', this.onResize);

},

onOrientationChange: function(id) {

app.updatePage();

},

onResize: function(id) {

app.updatePage();
}

76



Media Query
• The program also uses media query introduced in CSS3 

to apply different styles in portrait and landscape (see 
example05/www/css/index.css).

@media screen and (orientation: portrait) {

body {

background-color: blue;

color: white;

}

}

@media screen and (orientation: landscape) {

body {

background-color: red;

color: black;

}

} 77



78



79



80



Example 6
• Example 6 shows you how to get accelerometer 

readings from the device. A 3D accelerometer provides 
acceleration readings in three dimensions. In in each 
dimension, the reading ranges between 0 (stationary) 
and 10 (maximum).

• Support for access to accelerometer is through 
cordova-plugin-device-motion. The plugin 
provides object accelerometer in navigator
namespace.

• The method to use is getAcceleration which 
requires two callbacks. One is to be called if acceleration 
readings obtained successfully, otherwise the other 
callback will be called.
navigator.accelerometer.getCurrentAcceleration(

onSuccess, onError);
81



Graphical Interface
• The app displays a button “Refresh accelerometer reading”. 

<button class="topcoat-button" 

onclick="app.getAccelerometer();">

Refresh accelerometer reading

</button>

• The paragraph “appInfo” displays the current state of the 
app as well as the last accelerometer reading. Initially it 
displays “Connecting to device”. 
<p id="appInfo"> Connecting to device ... </p>

• Once the deviceready event is received, it changes to 
“Device ready”.

• If the user clicks the button, a call to 
app.getAccelerometer is made and subsequently the 
results of the call is displayed in the appInfo area.
– See example06/www/index.html for complete code. 82



JavaScript Code
(see example06/www/js/index.js)

var app = {

initialize: function() {

this.bindEvents();

this.cordovaReady=false;

this.appInfo=document.getElementById("appInfo");

this.appInfo.innerHTML = "Conneting to device ...";
},

bindEvents: function() {

document.addEventListener('deviceready', 

this.onDeviceReady, false);

},

onDeviceReady: function() {

console.log("Device ready.");
app.cordovaReady = true;

app.appInfo.innerHTML="Device ready ...";

},
83



JavaScript Code
getAccelerometer: function() {

console.log("Entered getAccelerometer()");

if (this.cordovaReady) {

navigator.accelerometer.getCurrentAcceleration(
this.onAccelSuccess,
this.onAccelFailure);

} else {

console.log("Cordova is not ready yet");

}

},

onAccelSuccess(accel) {

// update appInfo with accelerometer reading
},

onAccelFailure(errObj) {

// report error in appInfo

}

};

app.initialize();
84



onSuccess Callback
• If getAcceleration method successfully obtains the 

accelerometer reading, the onSuccess callback 
(onAccelSuccess) will be called.

• The callback will receive an object accel containing the current 
time accel.timestamp and acceleration reading along x, y, and 
z directions (accel.x, accel.y, and accel.z).

onAccelSuccess(accel) {

var d = new Date(accel.timestamp);

var s = '<ul class="topcoat-list__container">';

s += '<li class="topcoat-list__header">Accelerometer Reading</li>';

s += '<li class="topcoat-list__item"> X: '+accel.x+'</li>';

s += '<li class="topcoat-list__item"> Y: '+accel.y+'</li>';
s += '<li class="topcoat-list__item"> Z: '+accel.z+'</li>';

s += '<li class="topcoat-list__item"> timestamp: ’

+d.toLocaleString()+'</li>';

s += '</ul>';

app.appInfo.innerHTML = s;

}, 85



onError Callback
• If getAcceleration method is unsuccessful in getting the 

accelerometer reading, the onError callback (onAccelFailure) 
will be called.

• The callback will receive an object errObj containing the error 
information

onAccelFailure(errObj) {
console.log("Enter onAccelFailure");

app.appInfo.innerHTML = JSON.stringify(errObj);   

}

• In the above code, JSON.stringify method converts a 
JavaScript object into a string.

86



Other Notes 
• Stylesheet:

– In Example 6, we used a well-know CSS library from Adobe: topcoat.
– The library is free, and you can download it from http://topcoat.io.

• Tests:
• While most smartphones are now equipped with an accelerometer, 

support for accelerometer on browsers and device emulators vary.
• I have tested the app on Google Chrome. It provides simulation of 

accelerometer.
• Android emulator provides a simulated accelerometer, see the 

screenshot in the next slide.
• However, there seems to be no support for accelerometer on the 

iPhone emulator, see the screen shot in the next slide.

87

http://topcoat.io/


88



Example 7
• Example 7 shows you how to get the camera to take a 

picture. 
• Support for camera is through cordova-plugin-
camera. However the support on various devices and 
emulators are inconsistent and patchy at this moment.

• In this example, we will only show how to access the 
inbuilt camera application and instruct it to take a picture. 
However no attempt is made in this app to actually 
retrieve the picture that was taken. The later is more 
involved and sometimes requires a good deal of 
tweaking on different devices.

• The call to take a picture takes the form:
navigator.camera.getPicture(

onSuccess, onError, options);

89



Graphical Interface
• The app displays a button “Take a picture”. 

<button class="topcoat-button” 

onclick="app.takePicture();">

Take a picture

</button>

• The paragraph “appInfo” displays the current state of the 
app as well as the last accelerometer reading. Initially it 
displays “Connecting to device”. 
<p id="appInfo"> Connecting to device ... </p>

• Once the deviceready event is received, it changes to 
“Device ready”.

• If the user clicks the button, a call to app.takePicture is 
made to access the inbuilt camera application.
– See example07/www/index.html for complete code.

90



JavaScript Code
(see example07/www/js/index.js)

var app = {

initialize: function() {

this.bindEvents();

this.deviceReady=false;

this.ai=document.getElementById("appInfo");

this.ai.innerHTML = "Conneting to device ...";
},

bindEvents: function() {

document.addEventListener('deviceready', 

this.onDeviceReady, false);

},

onDeviceReady: function() {

console.log("Entered onDeviceReady.");
app.deviceReady = true;

app.ai.innerHTML="Device ready ...";

},

91



JavaScript Code
takePicture: function() {

console.log("Entered takePicture");

if (this.deviceReady) {
navigator.camera.getPicture(

this.onCameraSuccess, this.onCameraError,

{destinationType: Camera.DestinationType.File_URI});

}

},

onCameraSuccess: function(imageURI) {
console.log("Enter onCameraSuccess");

app.ai.innerHTML = "Image is in: "+JSON.stringify(errObj);

},

onCameraError(message) {

console.log("Enter onCameraError");

app.ai.innerHTML = message;

}
};

app.initialize();
92



navigator.camera.getPicture
• The method getPicture requires three arguments.

– The first one is a callback (onCameraSuccess) if the method has 
successfully accessed inbuilt camera app.

– The second one is a callback (onCameraError) if the method fails 
to gain access to the inbuilt camera app.

– The last one is an object contains various options. For details see 
the following Cordova documentation:

• https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-
camera/index.html#module_camera.getPicture

• Tests show that 
– Google Chrome has access to the computer’s camera.
– Android emulator supports the camera operation.
– iPhone emulator doesn’t support camera
– Test on an android phone (Mi Note LTE, Android 6.01) shows that 

app can access the camera app on the device.
93

https://cordova.apache.org/docs/en/latest/reference/cordova-plugin-camera/index.html


94



95



96



97



98



Example 8
• The last example is a client-server example. The client 

displays an HTML form inviting the user to enter the unit 
information including the unit code and unit name. Each 
textbox for a unit code monitors the blur event, which will 
trigger a call to a JavaScript method to retrieve the unit 
name corresponding to the unit code from the server. 

99



Retrieve Unit Name 
from the Server

• This JavaScript method, getUnitName, uses Ajax to send an 
HTTP request to the server script getUnitName.php and once 
the response comes back from the server script, it enters the unit 
name in the unit name textbox for that unit code, saving the user 
from typing the long unit name into the textbox.

100



getUnitName Method
• See www/js/index.js for complete code
getUnitName: function(unitCode, id) {

console.log(unitCode + " " + id);

var xhr = new XMLHttpRequest();

xhr.onreadystatechange = function() {
if (xhr.readyState == 4 && xhr.status == 200) 

if (xhr.responseText) { 

console.log("responseText: " + xhr.responseText);

document.getElementById(id).value 

= xhr.responseText;

}
}

xhr.open("GET", 
"http://ceto.murdoch.edu.au/~s900432d/ICT286/getUnitName.php?UnitCode=
" + unitCode); 

xhr.send(null);
},

Note: the above code uses Ajax to retrieve the unit name. We will discuss 
Ajax in a later topic. For now, just accept it if you don’t understand it. 101



getUnitName.php
• See server/getUnitName.php for complete code
<?php

header("Access-Control-Allow-Origin: http://localhost:8000");
$units = array(

"ICT286" => "Web and Mobile Computing",

"ICT374" => "Operating Systems and Systems Programming",

"ICT397" => "Advanced Games Design and Programming",

"ICT375" => "Advanced Web Programming",

"ICT365" => "Software Development Frameworks",
"ICT517" => "Advanced IT Project",

"ICT167" => "Principles of Computer Science"

);

$unitCode = $_GET["UnitCode"];

if (array_key_exists($unitCode, $units))

print $units[$unitCode];

else
print ""; 

?>

Note: we will discuss PHP programming in the next topic. 102



Cross-Origin Response
• Many web browsers do not accept the response from a 

cross-origin server. Eg, in our getUnitName method, we 
use xhr to create and send an HTTP request to the server:
xhr.open("GET", 
"http://ceto.murdoch.edu.au/~s900432d/ICT286/getUnitName.ph
p?UnitCode=" + unitCode);

xhr.send(null);

– The request comes from http://localhost:8000/
– But the response comes from http://ceto.murdoch.edu.au/

• This response is a cross-origin response. For security 
reason, many browser would reject such a response.

• In order for your browser to accept a cross-origin response, 
you need to add Access-Control-Allow-Origin 
header into your response:
header("Access-Control-Allow-Origin: 

http://localhost:8000"); 103

http://localhost:8000/
http://ceto.murdoch.edu.au/~s900432d/ICT286/getUnitName.php


Configure Your Mobile App
• You can configure your mobile app so that it can only 

access a particular location in the Internet.
• In this example, you add the following element in the 

configuration file config.xml:

<access origin="http://ceto.murdoch.edu.au/*" />

– This means that our mobile app can only get response from the ceto
server. 

– Note that the default configuration allows the app to access any 
place.

104



105



106



Further Work
• The best and most up to date information is in 

Cordova Documentation:
https://cordova.apache.org/docs/en/latest/

• Suggestions
– To learn more about Cordova, you need practice.
– It is essential that you install Cordova on your own 

computer in order to do more practice. Follow the 
instructions to install Cordova on your own computer –
this include

• Installing Android Studio and SDK
• Installing Xcode (if you use a Mac)
• Installing Node.js
• Installing Git
• Installing Cordova 107

https://cordova.apache.org/docs/en/latest/

